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Verific Design Automation is known for its Verilog, VHDL and SystemVerilog 

language processing sub-systems. Since its founding in 1999, its software has served as 

the front end to a wide range of electronic design automation (EDA) and field 

programmable gate array (FPGA) tools for analysis, simulation, verification, synthesis, 

emulation and test of register transfer level (RTL) designs. 

This article offers a look at how a design team would use Verific’s tools to ensure 

the success of an EDA project. It outlines what the Verific tool kit does, its internal 

representations and strategies for success, along with a few notes of caution. Finally, the 

article describes “Veriapps”, a package of utilities for Verific developers. 

Verific Toolkit Capabilities 

Verific’s tool kit reads in hardware description languages (HDLs) –– 

SystemVerilog, Verilog and VHDL. Depending on the amount of elaboration needed, it 

offers four levels of abstraction:  

 The parse tree 
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 The statically elaborated parse tree 

 The operator netlist 

 A gate level netlist 

 

The parse tree representation is generated during the analysis phase and traversed 

using a walker. Verific provides a template for walkers so each syntactic category can be 

easily traversed. Static elaboration further expands the parse tree by resolving parameters, 

generating statements and other statically determinable aspects of the HDL. 

For example, if a developer wants to add a type checker to catch a mismatch in 

sizes in a VHDL relational operator, it could be done using the VhdlExpression walker 

class. The Verific code elaborates it in a way that the developer can get a type for any 

identifier reference. Each identifier instance is represented as an IdReference which in 

turn refers to an IdDefinition field from which all type information about the identifier 

can be extracted..  

The parse tree can be evaluated to further resolve data types, as necessary –– such 

as, when evaluating recursive functions or resolving dynamically assigned ranges in 

VHDL. Mixed-language support is provided using the vl_types.vhd package that permits 

various type conversions. 

Full elaboration translates the parse tree to a netlist by performing a synthesis 

step. With a little care, operators can be preserved and a bus-oriented or unflattened data 

model extracted, called the “operator netlist.”   

This is a useful level of abstraction because it provides the semantics of the 

language using operators, including decoders, shifters and state elements. It also has a 

“wide operators” function on bus level structures, known as netbus or portbus in Verific 

terminology.  



The same netlist view is generated for all languages, allowing a high degree of 

language independence. This would be a good starting point, for example, if the 

application involves writing a simulation accelerator for synthesizable designs written in 

any HDL supported by Verific. Moreover, because Verific has taken care of the language 

processing, the developer only needs to understand the netlist. 

The Verific netlist follows a traditional Electronic Design Interchange Format 

(EDIF)-type hierarchy of library, cells, instance, view and ports. This model is efficient 

and familiar to most EDA developers. 

Using the flattening application programming interface (API), the Verific toolkit 

will flatten the operator-level netlist to primitive gates, such as PRIM_AND, PRIM_OR 

and PRIM_XOR. At this level, the full logic of the design is available. 
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Figure 1 Caption: The levels of abstraction support by Verific’s tool kit and their 

applicability are illustrated in this diagram. 

 

Integration of Verific into the Software Flow 

Verific’s C++ APIs can be called directly from a developer’s code, after correctly 

linking in the Verific libraries. The APIs most often used by developers are Analyze and 

Elaborate.  

Entry to the Verific data structures is usually through the top-level parse tree 

module (Verific API: veri_file::GetTopModules or netlist (Netlist::PresentDesign()).   

A side note: A wrapper to the Verific APIs is needed to provide a “Design 

Manager” that harvests all appropriate HDL files and resolves library issues discussed 

later.  

At this point, most developers translate Verific structures to their own database 

and continue independently of the Verific code base. However, the Verific netlist is 

sufficiently powerful and stable to justify its use in the developer’s environment. The 

issue remains how to do this in a way that protects the developer’s code base investment 

while safely exploiting the Verific code. 

RUSHC has experimented with three methods: 

(a) Deriving the Verific classes, including Instance and Cell, from a generic 

abstract class. 

(b) Deriving customer-specific classes from the Verific classes. 

(c) Templatization of code. Developing algorithms parameterized by abstract 

types and providing concrete interfaces that use Verific “hardened” types. 

 

While (a) and (b) effectively allow all Verific APIs to be accessible natively from 

customer code, (c) offers the most generality by quickly allowing core algorithms to be 

ported to new structures and keeps the style adopted by the boost libraries. To 

demonstrate, consider the representation of a “cut” in a netlist, where a cut is nothing 



more than a group of pins delineating a region of a netlist. The abstract class for a cut is 

outlined below. 

template <typename DesignObjectType> 
class CutAbstract 
    : private Rushc::Base::UnCopyAble 
{ 
public: 
    CutAbstract(); 
// . . .  
 
template <typename Predicate> 
    typename std::vector<DesignObjectType>::const_iterator 
FindDriver(Predicate) const; 
 
    const std::vector<DesignObjectType>& gOps() const; 
 
    const std::vector<DesignObjectType>& gDrivers() const; 
 
    virtual bool operator == (const CutAbstract&) const; 
 
    virtual bool operator != (const CutAbstract&) const; 
 
 
protected: 
    std::vector<DesignObjectType> m_drivers; 
 
    std::vector<DesignObjectType> m_outputs; 
 
    typedef typename boost::unordered_set<DesignObjectType> DriversSet; 
 

};.. 

Note that the DesignObjectType is left as a type parameter. The concrete version 

of the cut and its various algorithms is then realized by “hardening” the type of the 

DesignObjectType to the Verific specific type “PortRef”: 

class Cut 
    : public Rushc::Base::CutAbstract<const Verific::PortRef*> 
{ 
public: 
    Cut(); 
 
    virtual ~Cut(); 
 
    bool IsDegenerateCut() const; 
 
    void Print() const; 
 
}; // class Cut 

 

Using this approach, RUSHC built a set of library routines and useful applications 

for formal verification and synthesis that can exploit the full power of the Verific 

database while offering generality for use on other structures. For example, RUSHC 



ported a full formal verification method approach for generating timing exceptions from 

Verific to the customer database in days.  

Case Studies, Strategies for Success, Notes of Caution 

In our experience using the Verific tool kit, the key to success is deciding on the 

most appropriate level of abstraction in the Verific flow, whether it’s a parse tree, 

operator netlist or primitive netlist. A key point is deciding where the developer wants to 

innovate. Problems will arise if this decision is not carefully thought through. For 

instance, given that Verific provides a generic “operator” netlist view applicable to all 

languages, a developer would need a compelling reason to rewrite the elaborator part of 

Verific for his or her application. 

The following case samples can help set the context for such decisions. 

Company A: A Mapping Solution 

The project required the development of a high-speed technology mapping 

solution. Operators needed to be extracted by library operators and novel cut generation 

and matching algorithms devised. 

The Verific primitive netlist level of abstraction was selected, freeing the EDA 

developers from having to code HDL processing/elaboration and instead focus on the 

core new algorithms. The Verific netlist produced by elaboration was further improved 

by Sat-Sweeping [6],  A templatized mapping and matching solution was devised which 

could be run both on the Verific netlist and the data structures used post placement and 

routing. .  The innovation was correctly focused on where the EDA developer added most 

value. The lessons included the value of templatization and the stability and efficacy of 

the Verific database. 



 

Company B: RTL Acceleration for a Synthesizable HDL Subset 

The project required the extraction of novel instructions, including MULT, LD, 

ADD, STR with hardware specific ones eg “TAP x [10:0]” to fish bits out of busses, from 

an HDL for execution on a simulation hardware accelerator. The company had initially 

decided to “roll its own” elaborator and was investing expensive resources in resolving 

complicated HDL issues – including many of those those outlined in Sutherland’s 

“Standard Gotchas Subtleties in the Verilog and SystemVerilog Standards That Every 

Engineer Should Know” [2].  

However, the company only needed the synthesizable HDL subset. After some 

coaxing of the client, the operator level netlist from Verific was used as the basis for the 

machine instruction generation and, within a few weeks, instructions were being 

generated. The focus of the project shifted to “how to establish the value of high-speed 

simulation acceleration” from “how to resolve complicated HDL issues.”  

The lesson learned by this company is to avoid becoming an HDL processing 

guru unless that is the core business. 

Company C: Formal Methods for Timing Exception Checks  

Another project required developing and applying timing exception proving 

algorithms using formal methods such as the And Invert Graph (AIG) techniques.  

From the start, data structures beyond the Verific netlist would need to be used 

and Verilog counter examples would need to be generated and, where possible, 

references to the users’ source HDL made. For example: 

sequence LSA_3__CD_3__PATH_IS_NOT_SENSITIZED_1_CYCLES; 

     (! pulse); 



endsequence 

The Verific netlist database was chosen as the starting point, freeing the EDA 

team from learning HDLs. A utility for translating the Verific netlist to an ABC [7] AIG 

was devised and a method for correlating inputs/outputs and “user nets” of both netlists 

was constructed. Verific’s code has an API for marking nets that appear in the user’s 

source HDL as a “user net”, net -> isUser().  

High-speed algorithms for simulation, sat clause generation bounded model 

checking and fixed-point analysis were devised. As before, a templatized approach to 

algorithm development was used.  

A trade-off was made between algorithms best run on the Verific netlist database, such as 

simulation for candidate filtering, and those best run on the AIG model  such as bounded 

model checking and ternary simulation for fixed point analysis. By starting with the 

Verific database annotated with user source/line information, algorithms were provided 

with useful information about the original design. Using the templatization approach, the 

core algorithms developed were easily applied to both the company’s database and the 

Verific database. 

Wish List of Verific Functionality 

In the course of executing multiple Verific projects, we have accumulated a list of 

items of benefit to design teams. These are generic utilities that could be in the Verific 

code base but are not and include: 

 A package for checking the parse tree for language gotchas and warnings, 

such as those outlined in [2] and those in the Semiconductor Reuse 

Standard [5]. Every design team wants better error reporting. 

 Redundancy removal, sat-sweeping [6]. Many applications need to start 

from the smallest netlist possible. 



 Design Manager. The Verific APIs provide basic “analyze” and 

“elaborate” type functionality and support for Verilog-XL / VCS type –f 

options. Most applications demand a wrapper for supporting command 

line arguments, handling multiple libraries and invoking VHDL file 

sorting etc. This is common code that should be shared. 

 Core algorithms running on Verific netlist representations for verification, 

library-based technology mapping, pretty printing, including dot file 

generation, and basic netlist utilities, such as standard depth first search 

and breadth first search functors. 

 

RUSHC developed the Veriapps (for Verific Applications) package to fulfill some 

of these requirements. 

Veriapps 

The Veriapps library of utilities for the Verific tool chain from RUSHC operates 

on the Verific data structures. The packages shown in the table below are accessible via 

C++ or the Verific Perl interface, and the code is available in source form. 

Package Data Structure Level Description 

Generic 

walker 

 

Parse Tree Generic parse tree walker with callback 

mechanism for custom language checks. 

STPGen Operator Netlist Generates Simple Theorem Prover (STP)[8] 

data structures and Saturated Module Theorem 

(SMT)-2 formats for use with STP and Z-3 [9] 

solvers. 

 

Abcintf Primitive Netlist Source-level integration of the abc package [7] 

and includes access to all abc commands for 

synthesis and verification. 

 

Sat-sweep Primitive Netlist Network clean up. Sat sweeping, constant 

removal, common logic extraction to reduce 

the size of the netlist. 

 

NwkSim Operator Netlist, 

Primitive Netlist 

Simulation engine is an application of dfs to 

allow random and constrained random 

simulation on Verific netlists at the primitive 

and operator level. 

 

Formal Verify Primitive Netlist, 

Operator Netlist 

Formal verification using Sat of two Verific 

netlists for checking transformations. 



 

Cgate Primitive Netlist Generation of clock gates for source Verilog. 

The two cases considered are flop output is 

unobservable on next cycle, and flop input is 

proven not to change on next cycle. 

 

Nwk, Util,IO, 

Cut 

Operator Netlist 

Primitive Netlist 

Utilities for traversing Verific netlist, such as 

BFS and DFS, cut generation, cut 

representation, i/o including dot-file 

generation. 

 

Liberty, 

tech_map 

 

Primitive Netlist Technology mapper onto Liberty library cells. 

Llvm interface Operator Netlist Generates operator netlist from llvm ir [4]. 

Algorithms include SDC scheduling [3], 

resource assignment and mapping of sequences 

of instructions to library. 

 

 

Conclusion 

 It’s often advised that companies and tool developers stick to their core 

competencies. Verific’s HDL parsers and elaborators can offer that opportunity, saving 

time and resources. RUSHC’s Veriapps package provides a tool kit to complement the 

Verific HDL parsers for assembling EDA applications. 
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